Second-Generation Linkage Maps for the Pacific Oyster Crassostrea gigas Reveal Errors in Assembly of Genome Scaffolds

نویسندگان

  • Dennis Hedgecock
  • Grace Shin
  • Andrew Y Gracey
  • David Van Den Berg
  • Manoj P Samanta
چکیده

The Pacific oyster Crassostrea gigas, a widely cultivated marine bivalve mollusc, is becoming a genetically and genomically enabled model for highly fecund marine metazoans with complex life-histories. A genome sequence is available for the Pacific oyster, as are first-generation, low-density, linkage and gene-centromere maps mostly constructed from microsatellite DNA makers. Here, higher density, second-generation, linkage maps are constructed from more than 1100 coding (exonic) single-nucleotide polymorphisms (SNPs), as well as 66 previously mapped microsatellite DNA markers, all typed in five families of Pacific oysters (nearly 172,000 genotypes). The map comprises 10 linkage groups, as expected, has an average total length of 588 cM, an average marker-spacing of 1.0 cM, and covers 86% of a genome estimated to be 616 cM. All but seven of the mapped SNPs map to 618 genome scaffolds; 260 scaffolds contain two or more mapped SNPs, but for 100 of these scaffolds (38.5%), the contained SNPs map to different linkage groups, suggesting widespread errors in scaffold assemblies. The 100 misassembled scaffolds are significantly longer than those that map to a single linkage group. On the genetic maps, marker orders and intermarker distances vary across families and mapping methods, owing to an abundance of markers segregating from only one parent, to widespread distortions of segregation ratios caused by early mortality, as previously observed for oysters, and to genotyping errors. Maps made from framework markers provide stronger support for marker orders and reasonable map lengths and are used to produce a consensus high-density linkage map containing 656 markers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas.

We constructed male and female consensus linkage maps for the Pacific oyster Crassostrea gigas, using a total of 102 microsatellite DNA markers typed in 11-day-old larvae from three families. We identified 11 and 12 linkage groups in the male and female consensus maps, respectively. Alignment of these separate maps, however, suggests 10 linkage groups, which agrees with the haploid chromosome n...

متن کامل

Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas)

Single nucleotide polymorphisms (SNPs) are widely used in genetics and genomics research. The Pacific oyster (Crassostrea gigas) is an economically and ecologically important marine bivalve, and it possesses one of the highest levels of genomic DNA variation among animal species. Pacific oyster SNPs have been extensively investigated; however, the mechanisms by which these SNPs may be used in a...

متن کامل

Complete Genome Sequence of Vibrio coralliilyticus 58, Isolated from Pacific Oyster (Crassostrea gigas) Larvae

We report here the complete genome of Vibrio coralliilyticus strain 58, which was originally isolated from inactive Pacific oyster (Crassostrea gigas) larvae in Japan. The assembled genome consisted of two chromosomes and one plasmid. These data will provide valuable information and important insights into the biodiversity of this organism.

متن کامل

A Rhodopsin-Like Gene May Be Associated With the Light-Sensitivity of Adult Pacific Oyster Crassostrea gigas

Light-sensitivity is important for mollusc survival, as it plays a vital role in reproduction and predator avoidance. Light-sensitivity has been demonstrated in the adult Pacific oyster Crassostrea gigas, but the genes associated with light-sensitivity remain unclear. In the present study, we designed experiments to identify the genes associated with light-sensitivity in adult oysters. First, w...

متن کامل

Evidence of differential chromosome loss in aneuploid karyotypes of the Pacific oyster, Crassostrea gigas.

The G-banding technique was performed on aneuploid karyotypes from gill tissue of the Pacific oyster, Crassostrea gigas, to assess whether chromosome losses could be explained by differential chromosomal susceptibility and to clarify the negative correlation between aneuploidy and growth rate previously reported in different populations of this oyster. The study of 95 G-banded aneuploid karyoty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015